

29. Miles DW, Earl HM, Harper PG, *et al.* Intensive weekly chemotherapy for good-prognosis patients with small-cell lung cancer. *J Clin Oncol* 1991, **9**, 280-285.

30. Ihde DC, Johnson BE, Mulshine JL, *et al.* Randomised trial of high dose versus standard dose etoposide and cisplatin (VP16/Plat) in extensive stage small cell lung cancer (SCLC). *Proc ASCO* 1991, **10**, 240.

31. Crawford J, Green MR. The role of colony stimulating factors as an adjunct to lung cancer chemotherapy: a commentary. *Lung Cancer* 1992, **8**, 153-158.

32. Gurney H, Anderson H, Radford J, *et al.* Infection risk in patients with small cell lung cancer receiving intensive chemotherapy and recombinant human granulocyte-macrophage colony-stimulating factor. *Eur J Cancer* 1992, **28A**, 105-112.

33. Rasthoven J, Levin L, Eisenhauer E, *et al.* Two phase I studies of carboplatin dose escalation in chemotherapy-naïve ovarian cancer patients supported with granulocyte-macrophage colony-stimulating factor. *J Natl Cancer Inst* 1991, **83**, 1748-1753.

34. Hoekman K, Wagstaff J, van Groeningen CJ, Vermorken JB, Boven E, Pinedo HM. Effects of recombinant human granulocyte-macrophage colony-stimulating factor on myelosuppression induced by multiple cycles of high-dose chemotherapy in patients with advanced breast cancer. *J Natl Cancer Inst* 1991, **83**, 1546-1553.

35. Walsh C, Blum RH, Oratz R, Goldenberg A, Downey A, Speyer JL. Phase I study of doxorubicin, ICRF-187 and granulocyte-macrophage colony-stimulating factor. *J Cancer Res Clin Oncol* 1992, **118**, 61-66.

36. O'Dwyer PJ, LaCreta FP, Schilder R, *et al.* Phase I trial of thiotepa in combination with recombinant human granulocyte-macrophage colony-stimulating factor. *J Clin Oncol* 1992, **10**, 1352-1358.

37. Neidhart J, Mangalik A, Kohler W, *et al.* Granulocyte colony-stimulating factor stimulates recovery of granulocytes in patients receiving dose-intensive chemotherapy without bone marrow transplantation. *J Clin Oncol* 1989, **7**, 1685-1692.

38. Kaplan LD, Kahn JO, Crowe S, *et al.* Clinical and virologic effects of recombinant human granulocyte-macrophage colony-stimulating factor in patients receiving chemotherapy for human immunodeficiency virus-associated non-Hodgkin's lymphoma: results of a randomized trial. *J Clin Oncol* 1991, **9**, 929-940.

39. Vadhan-Raj S, Broxmeyer HE, Hittelman WN, *et al.* Abrogating chemotherapy-induced myelosuppression by recombinant granulocyte-macrophage colony-stimulating factor in patients with sarcoma: protection at the progenitor cell level. *J Clin Oncol* 1992, **10**, 1266-1277.

40. Lowry PA, Tabbara IA. Peripheral haematopoietic stem cell transplantation: current concepts. *Exp Haematol* 1992, **20**, 937-942.

41. Macbeth FR. VM26: phase I and II studies. *Cancer Chemother Pharmacol* 1982, **7**, 87-91.

42. O'Dwyer PJ, Alonso MT, Leyland-Jones B, Marsoni S. Teniposide: a review of 12 years of experience. *Cancer Treat Rep* 1984, **68**, 1455-1466.

43. Hayes FA, Green AA, Casper J, Cornet J, Evans WE. Clinical evaluation of sequentially scheduled cisplatin and VM26 in neuroblastoma: response and toxicity. *Cancer* 1981, **48**, 1715-1718.

44. Iberti V, Donadio M, Giaccone G. Cisplatin and teniposide chemotherapy for advanced non-small cell lung cancer. *Eur J Cancer* 1991, **27**, 1104-1106.

Acknowledgements—This study was carried out with the cooperation of the following doctors: Akira Kojima, Fumihiro Oshita, Kazuhiko Nakagawa (National Cancer Center, Tokyo), Ikuo Nomura, Tamotsu Kaneko (Kanagawa Cancer Center), Masaru Suzuki, Junichi Nakano (Kantou Central Hospital), Akio Onaka (The Second Tokyo National Hospital), Tsutomu Fukuda (Shizuoka General Hospital), Kazuo Fujieda (Tokyo Teishin Hospital), Yoshiro Murayama (Tokyo University Branch Hospital), Masayuki Noguchi, Kouji Narui (Toranomon Hospital), Akira Nagatomo, Susumu Arai, Kouzou Yamada, Hideo Kunitou (Yokohama Municipal Citizen's Hospital). We thank Dr Dean Brenner (Associate Professor of Internal Medicine, University of Michigan) for his valuable advice on this manuscript. Dr Brenner's activities were supported by the Foundation for Promotion of Cancer Research's Visiting Scientist Program, based on the Comprehensive 10-Year Strategy for Cancer Control. We also thank Dr James R. Jett (Professor of Internal Medicine, Mayo Medical School and Staff Consultant, Mayo Clinic) for his thoughtful suggestions. The secretarial assistance of Ms Sachiko Asanuma and Yukako Sato is gratefully acknowledged. We also thank Ms Jennifer M. Jett for the English editing of this manuscript.

This study was supported in part by Grant for Aid 10 Year Comprehensive Strategy for Cancer Research, Ministry of Health and Welfare, Japan.

European Journal of Cancer Vol. 30A, No. 2, pp. 194-201, 1994
Copyright © 1994 Elsevier Science Ltd
Printed in Great Britain. All rights reserved
0959-8049/94 \$6.00 + 0.00

0959-8049(93)E0045-R

Feature Articles

What is the Place of Carboplatin in Paediatric Oncology?

François Doz and Ross Pinkerton

INTRODUCTION

THE FIRST experimental evidence of the cytotoxic effect of cisplatin was reported in 1965 [1]. The use of this drug in paediatric oncology practice dates from the end of 1970s [2]. Its use is limited by cumulative toxicity (hearing and renal impairment) [3]. However, the high activity of this drug in numerous childhood tumours has made this drug an essential component of paediatric oncology practice. In an attempt to

improve the therapeutic index, a number of platinum analogues have been synthesised. The main analogue used at present is cis-diamminodcarboxylato-cyclobutane-platin (carboplatin), whose indications in solid tumours of childhood are becoming more and more numerous. In this review we consider the pharmacodynamic characteristics and the pharmacokinetics of carboplatin compared to cisplatin, its current indications, toxicity and possible future use in children.

PHARMACODYNAMICS

Mechanism of action

The essential mechanism of action of platinum derivatives is the covalent binding by the diamino platinum radical with DNA: this has been mainly studied with cisplatin [1]. As with cisplatin, the amine radicals of carboplatin are not modified while mono or dicarboxylatocyclobutane radicals bound to the platinum atom are hydrolysed. The hydroxyl groups substituted in this way are capable of reacting with the molecular targets on intranuclear DNA [4]. This can be either between the same strand of DNA (intrastrand link) or between two complementary strands (interstrand link). The second mechanism of interaction, although quantitatively less important, seems to be the determinant of the drugs cytotoxicity. A modification in the structure of DNA induced by this linkage impairs cell replication. The essential difference between cisplatin and carboplatin is the kinetics of this linkage to DNA. The hydrolysis of cisplatin is much more rapid, and the speed of linkage with DNA is also greater [5]. The linkages between the diamino platinum radical with intracytoplasmic RNA or with proteins of the membrane cytosol or the nucleus are probably equivalent, but their role in the drug's cytotoxicity is uncertain.

Mechanisms of resistance

These are better known for cisplatin than for carboplatin and comprise at least four mechanisms [6, 7]:

1. A reduction in the entrance of drug into the cell (or an increase in its efflux) [8].
2. Repair mechanisms which restore the intact DNA molecule after excision of the segments of DNA to which the diamino platinum radicals are bound [9]. This mechanism is one of the theories for the synergy described *in vitro* between platinum compounds and the epipodophyllotoxins. The latter inhibit topoisomerase II, an enzyme implicated in the repair of DNA.
3. Intracytoplasmic chelation of platinum by thiol groups: glutathione in the form of GSH (reduced glutathione) [10] or metallothionein [11]. The consequence of this is a reduction in the proportion of drug which reaches its principal target, intranuclear DNA. The modulation of the intracytoplasmic pool of the thiol radical has been proposed as a method of improving the therapeutic index of platinum derivatives by inhibiting the synthesis of GSH, specifically in tumour cells, or by increasing the cellular concentration of metallothionein in normal tissues.
4. Finally, the amplification of certain oncogenes within the *ras*, *fos* and *myc* families has been associated with increased resistance to cisplatin *in vitro* [12, 13]. To date, it is not known precisely which biological mechanisms related to oncogene amplification affect platinum derivatives' cytotoxicity.

PHARMACOKINETICS

Pharmacokinetic parameters

One of the most characteristic features of platinum derivatives is their covalent binding to plasma protein. The diamino platinum radical binds particularly at the level of thiol groups. Protein binding is not a mechanism of drug transport but represents a mechanism of inactivation as, once bound covalently to protein,

the diamino platinum radical is unable to interact with the molecular target on DNA.

Thus, the only form of circulating drug which is potentially active is the free form, unbound to either plasma protein or erythrocytes. This fraction is capable of undergoing intracellular hydrolysis and reacting with DNA. Pharmacokinetic studies of platinum derivatives are usually performed using flameless atomic absorption spectrometry [14–16], which does not enable separation of different drug metabolites. The free drug can be estimated by ultrafilterable platinum, which is probably the most relevant pharmacokinetic parameter, and should be distinguished from total plasma platinum.

The difference in pharmacokinetic behaviour of cisplatin and carboplatin is explained essentially by the greater rate of hydrolysis of cisplatin. Thus, by comparison to cisplatin, carboplatin is less rapidly bound to plasma proteins, has a higher proportion of free ultrafilterable drug, a longer half-life of free and of bound drug and, finally, a faster elimination in urine [15, 17, 18].

Dose formula for carboplatin

Although the pharmacokinetic behaviour of many active cytotoxic drugs has been documented, this is often multifactorial and subject to many variables. Carboplatin is an exception in that it is almost entirely excreted by the kidneys through glomerular filtration. For this reason, the elimination half-life is closely correlated with the glomerular filtration rate (GFR), and the area under the concentration curve (AUC) can, therefore, be predicted from a variety of methods of assessing renal clearance. This provides the potential for patient-specific dose regimens calculated from studies of renal clearance. In this way a target AUC can be achieved which will correlate with toxicity and possibly with cytotoxic activity. Studies in adults have shown that such a formula can be used to predict AUC [19, 20] and attempts are currently underway to derive a comparable formula for paediatric patients. Initial studies applying the adult formula to children were inaccurate because of overestimation of non-renal clearance, which is mainly due to reactions with tissue and plasma proteins, and has been shown to correlate with total body mass. Recently, Newell and colleagues have derived a formula based either on total body weight or total body water, which may provide a more accurate prediction for the small child [21].

The precise target AUC in paediatric practice is a controversial issue [22]. In adults with malignant teratoma poor outcome was shown in patients with an AUC less than 4 (mg/ml·min). In the current United Kingdom Children's Cancer Study Group (UKCCSG), a target AUC of 6 is used for germ cell tumour therapy. This is equivalent in a patient with normal renal function to a dose of around 500–600 mg/m². In regimens using higher dose carboplatin, such as for osteogenic sarcoma or neuroblastoma, a target AUC of around 8–10 would probably be necessary to produce comparable activity to the dose of cisplatin generally used. When carboplatin is incorporated into megatherapy regimens using bone marrow rescue, an AUC of 20 is comparable to 2–2.5 g/m². This dose has been shown to be tolerable in pilot studies using a GFR-based formula for dosage. It is particularly important when very high dose carboplatin is being given as a single high dose to be able to predict accurately the AUC. There is little point giving a child with very high renal clearance a dose based on surface area, if the eventual AUC ends up at less than 10. Conversely, in a child with impaired renal function, a dose of 2 g/m² may be anticipated to cause severe toxicity.

Correspondence to F. Doz at the Service de Pédiatrie, Institut Curie, 26 rue d'Ulm 75231 Paris Cedex 05, France.

R. Pinkerton is at the Children's Department, The Royal Marsden Hospital, London & Surrey, Downs Road, Sutton, Surrey SM2 5PT, U.K.

Revised and accepted 10 Nov. 1993.

It has recently been shown in adults that AUC can be correctly estimated with limited plasma sampling [23]. If this is confirmed in children, another way to realise dose adaptation, when carboplatin is given as a fractionated daily infusion, might be to adapt the dosage of carboplatin according to the measured AUC after the first infusion.

Tissue distribution

Because of the pharmacokinetic characteristics, the volume of distribution of carboplatin is proportionally less than that of cisplatin. However, animal studies have shown that the diffusion of carboplatin may be particularly impressive in certain tissues. Thus, the superior penetration into brain tissue by carboplatin [24], probably as a result of the greater gradient of free drug across the blood-brain barrier, makes this drug an attractive candidate for treatment of brain tumours in comparison to cisplatin [25]. Moreover, the good diffusion of carboplatin into haemopoietic tissues [24], as indicated by its striking haematological toxicity, has led to suggestions that carboplatin may have advantages over cisplatin in the treatment of haematological malignancies.

The problem of cross-resistance

The existence of cross-resistance between cisplatin and carboplatin depends to some extent on the pharmacodynamic characteristics and the pharmacokinetics of the two drugs. It has been well established at the experimental level where the interaction of platinum derivatives with DNA [5] or their cytotoxicity in tumour cell lines [25] was studied. This cross-resistance is not surprising as the principal mechanisms of action, and most of the mechanisms of resistance (increased DNA repair and thiol chelation) are thought to be the same for both cisplatin and carboplatin. The concept of dose equivalents between cisplatin and carboplatin is not easily transferred from laboratory to clinic. Carboplatin concentrations at least 10 times higher than cisplatin are necessary to produce the same cytotoxic effects *in vitro* [5]. In clinical practice, the haematological toxicity of carboplatin is a dose-limiting factor and, in conventional dose chemotherapy, only four to six times the cisplatin dose is generally used. However, in the case of *in vivo* treatment of certain tumours, other factors, such as different tissue penetration or local conditions regarding drug hydrolysis, particularly at the level of tumour cells, may perhaps lead to an advantage for carboplatin, despite cross-resistance observed *in vitro*.

TOXICITIES

Haematological toxicity

This is a dose-dependent toxicity and the limiting toxicity of carboplatin. It is particularly marked for the platelet lineage. Phase I studies of carboplatin in children have demonstrated this to be less severe than in adults, thus allowing the use of higher doses in this age group [26]. Because of improved supportive care (broad spectrum antibiotics during febrile neutropenic episodes, blood product transfusion availability), haematological toxicity, which is short term, can be fairly easily managed, and thus the short- and long-term consequences for haemopoiesis are less important than those of renal or auditory toxicity. The haematological toxicity is cumulative and the use of high doses of carboplatin, generally associated with other marrow suppressive drugs, will increase the risk of myelosuppression during successive treatments. Finally, pre-existing renal insufficiency markedly increases the risk of haematological toxicity associated with carboplatin [20].

The dose effect is one of the main principles of cancer chemotherapy, whereby increasing the drug dose also increases its antitumour effect [27]. While dose escalation of cisplatin is limited by renal and auditory toxicity, the haematological toxicity of very high dose carboplatin may be limited by the use of autologous stem cell transfusion and/or utilisation of bone marrow growth factors [28, 29]. Unexpectedly high incidences of veno-occlusive disease and fungal deaths have been associated with high-dose carboplatin regimens given to patients who have previously received cisplatin [30]. Although the use of the most readily available haematopoietic growth factors granulocyte colony-stimulating factor (G-CSF) and granulocyte-macrophage CSF (GM-CSF) does not produce any reduction in the degree of thrombocytopenia, recent data show a reduction of carboplatin-induced thrombocytopenia with the use of interleukin-1 α [31].

Nephrotoxicity

Although not negligible [32], the risk of renal toxicity with carboplatin is much less than with cisplatin. However, under two circumstances, it is necessary to monitor closely renal function prior to using this drug [15]: firstly, when using very high dose carboplatin, such as in high dose combination chemotherapy with autologous bone marrow rescue; and, secondly, when there is known renal dysfunction. In both situations, delay in the elimination of carboplatin will not only predispose to severe haematological toxicity but also possibly to nephrotoxicity.

Whether renal function should be monitored routinely following carboplatin use in children is controversial [33]. Association with other nephrotoxic treatments, either anti-tumour treatments (chemotherapy such as ifosfamide or abdominal irradiation) or supportive care treatments (aminoglycosides, antifungals such as amphotericin B or high dose acyclovir) may predispose to the risk of renal damage. Even if the immediate effects of carboplatin on renal function are less than that of cisplatin [34], one cannot necessarily conclude that there is a complete absence of long-term effects.

Neurotoxicity

In children the neurotoxicity of cisplatin is predominantly limited to sensory dysfunction, namely ototoxicity [35]. This is due to the accumulation of cisplatin in the organ of Corti, and leads to deafness which initially involves the high frequencies. This necessitates regular surveillance hearing tests: free field audiometry or evoked auditory potential in the very young child or formal audiography in older children. This ototoxicity is also cumulative. Carboplatin is reputedly non-ototoxic, but the use of very high cumulative doses, particularly when there is prior renal insufficiency which delays elimination of the drug, will lead to a potential risk of hearing dysfunction [36].

Long-term surveillance of hearing in infants pretreated with carboplatin must, therefore, be careful, particularly when other potentially ototoxic treatments have been given (some antibiotics, furosemide and irradiation of the central nervous system) [37]. This surveillance should be continued even if examination at the end of treatment is normal to exclude late deterioration.

Intestinal toxicities

Carboplatin is less emetogenic than cisplatin, although strong anti-emetic treatment is still often required. The use of the new classes of anti-emetics, the 5HT₃ (serotonin) antagonists [38] is justified following the use of carboplatin, particularly when used at high doses. Mucosal toxicity and diarrhoea have also been

described following the use of high-dose carboplatin with autologous bone marrow rescue.

Mutagenic effects

The binding between the diamminoplatin radical and DNA encourages mutation [39] in a manner analogous to the mutagenesis associated with alkylating agents. This mutagenic ability could lead to the risk of secondary tumours or leukaemia [40]. Such toxicity has recently been described in 2 patients previously treated for osteogenic sarcoma using cisplatin, methotrexate and doxorubicin but without an alkylating agent. Both developed secondary myeloid leukaemia 3 and 4 years after initial therapy [41]. Only long-term follow-up of patients treated with carboplatin will clarify the incidence of such long-term complications.

Reproduction

The limited risk of hypofertility in males after cisplatin treatment for testicular cancer is well known but has to be analysed according to other associated treatments [42]. Experimental studies have shown some risk of male hypofertility after carboplatin treatment [43]. There is, therefore, a possible risk of sterility in patients previously treated with carboplatin during childhood, particularly in males, but no data are yet available.

METHODS OF ADMINISTRATION

One of the advantages of carboplatin in paediatric practice is the easy mode of administration with the use of short-term infusion. For standard doses of carboplatin, hospital admission is not required. Compared to cisplatin, it seems less justified to

use carboplatin as a continuous infusion, taking into account its spectrum of toxicity (relatively limited renal and auditory) and its pharmacokinetic characteristics (prolonged half-life of the free drug). In any case, for the treatment of brain tumours, short-term infusion is probably preferable in order to increase the passage across the blood-brain barrier [15].

Some experimental evidence suggests that myelotoxicity is reduced when the drug is given at night compared to during the day [44]. This effect has not, however, been demonstrated clinically.

CLINICAL INDICATIONS

Currently, the role of carboplatin in children can only be evaluated with certainty either from single-agent studies [45], or by analogy with phase II or phase III study results in adults, such as in the case of malignant germ cell tumours. In children, single agent studies are relatively uncommon and phase II studies often involve the empirical combination of carboplatin with other drugs. Three principles define the clinical indications of carboplatin: firstly, because of the lower risk of long-term nephro- and ototoxicity, carboplatin should be used in preference to cisplatin if at all possible, particularly in patients with a good prognosis; secondly, proven efficacy of cisplatin in a particular disease does not necessarily mean that carboplatin can "replace" cisplatin and does not preclude the need for clinical studies to evaluate the efficacy of carboplatin; thirdly, clinical studies might show activity for carboplatin in diseases where cisplatin had not been proven to be of value.

Currently, the indications for cisplatin include neuroblastoma [46], brain tumours [47], in particular medulloblastoma and

Table 1. Main combinations including carboplatin in standard dose chemotherapy in children

Reference	Diagnosis	Drugs	Total dose/course (mg/m ²)	Daily dose	Duration of infusion (h)
22	Mixed diagnosis	Carboplatin	Target AUC*	Adapted (day 1)*	1
		Ifosfamide	4000	2000 (days 2,3)	0,25
65	Medulloblastoma	VP-16	200	100 (days 2,3)	1
		Carboplatin	800	160 (days 1-5)	1
67	Brain tumours ("JET")	VP16	500	100 (days 1-5)	1
		Carboplatin	1000	500 (days 1-2)	2
72	Neuroblastoma	VP-16	300	100 (days 1-3)	1
		Carboplatin	800	160 (days 1-5)	1
74	Germ cell tumours ("JEB")	VP16	500	100 (days 1-5)	1
		Carboplatin	Target AUC**	500-700 (day 1)	1
		VP-16	360	120 (days 1-3)	1-3
77	Nephroblastoma	Bleomycin	15	15 (day 2)	24
		Carboplatin	800	160 (days 1-5)	1
		VP-16	500	100 (days 1-5)	1
80	MMT	Carboplatin	500	600 (day 1)	1
		Vincristine	3	1.5 (days 1,8)	Bolus
		Epirubicin	150	150 (day 1)	3
Unpublished data	MMT ("VINCAEPI")	Carboplatin	600	600 (day 3)	24
		Vincristine	1.5	1.5 (day 1)	24
Unpublished data	SIOP protocol Neuroblastoma ("OJEC")	Tenoposide	150	150 (day 4)	4
		Carboplatin	500	500 (day 1)	1
		Vincristine	1.5	1.5 (day 1)	Bolus
		Cyclophosphamide	600	600 (day 1)	Bolus
		VP-16	200	200 (day 1)	4

*The dose of carboplatin is adapted to Tc 99m-DTPA renal clearance (GFR) (ml/min/m²) according to the formula: dose (mg/m²) = target AUC × {(0.93 × GFR) + 15} where AUC is the area under the curve of the ultrafilterable carboplatin. **The dose of carboplatin is adapted to Cr 51-EDTA renal clearance (GFR) (ml/min) according to the formula: dose (mg) = target AUC × {GFR + (15 × SA)} where SA is the body area. Target AUC is 6 mg × min/ml. MMT, malignant mesenchymal tumours.

other primitive neuroectodermal tumours (PNET) [48], retinoblastoma [49], hepatoblastoma [50], malignant germ cell tumours [51], osteosarcomas [52] and undifferentiated nasopharyngeal carcinoma [53].

The main problem is to define to what extent carboplatin can or should replace cisplatin for these diseases, and if it could have a useful role in other tumour types. There are some examples where carboplatin seems superior [15]: high dose chemotherapy regimens using autologous bone marrow rescue, treatment of brain tumours [25, 54] or in the presence of pre-existing renal insufficiency. Carboplatin is now part of numerous high-dose chemotherapy protocols [28, 55–62]. The use of haematopoietic growth factors after high doses of carboplatin [29, 31, 63] might decrease its myelotoxicity and/or allow higher doses of the drug to be given. Carboplatin might also be used before collecting circulating haematopoietic stem cells by leukaphoresis; re-injected, these circulating stem cells can be used to reduce the toxicity of further treatments [29].

Impressive efficacy has been shown in phase II studies in medulloblastoma and other PNETs [64–67]. With malignant glial tumours, its efficacy seems less encouraging [68] but relatively low doses have been used. However, very interesting activity has been noted in brain stem glioma [69] and also in low grade supratentorial glioma [70, 71].

With regard to tumour types where cisplatin is known to be active, equal efficacy associated with carboplatin has already been demonstrated for certain of these, for example, neuroblastoma [72, 73] and malignant germ cell tumours [74]. However, recent studies in adults with malignant germ cell tumours have shown cisplatin to be better than carboplatin in good risk cases

[75], although this may reflect lower doses of carboplatin being used. The role of carboplatin is currently under study in other tumour types such as retinoblastoma, hepatoblastoma [76], osteosarcoma and nasopharyngeal carcinoma.

There is also the potential value of carboplatin in tumours where cisplatin has not been traditionally used. Its activity has recently been reported in patients with refractory or relapsed nephroblastoma [77], for whom one would not wish to use cisplatin because of compromised renal function. The extent of carboplatin diffusion into haemopoietic tissue and preliminary clinical studies in adults [78, 79], encourage the study of this drug's activity in leukaemias and lymphomas of childhood. Finally, it would also be of interest to assess the activity in tumours where cisplatin is not generally found to be particularly effective, such as in Ewing's sarcoma or soft tissue sarcomas. Despite lack of clear single-agent activity, carboplatin is currently used incorporated in both relapse and metastatic regimens of the SIOP malignant mesenchymal tumours (MMT) group [80].

COMBINATION THERAPY

Carboplatin in combination chemotherapy (Tables 1 and 2)

Often carboplatin is associated with epipodophyllotoxins (VM26 or VP16) on the basis of the synergy well established *in vitro*. The clinical efficacy of this association is often reported in childhood cancer [65, 67, 72, 74, 77].

Additive or synergistic antitumour effect is a principle also utilised in other associations, particularly with the anthracyclines [80], and also with alkylating agents, particularly in several high-dose chemotherapy regimens using bone marrow rescue [28,

Table 2. Main combinations including carboplatin for high dose chemotherapy in children

Reference	Diagnosis	Drugs	Total dose (mg/m ²)	Daily dose	Duration of infusion (h)
28	Mixed diagnosis	Carboplatin	1500	500 (days 4–6)	1
		Melphalan	120–140	30–32.5 (days 1–4)	0.5
		VP-16	1800	1800 (day 5)	4
		TBI	12 Gy	3 Gy	
57	Neuroblastoma ("OMEC")	Carboplatin	Target AUC*	200–350 (days 1–5)	1
		Melphalan	180	180 (day 6)	5 min
		VP-16	1000	200 (days 1–5)	3
		Vincristine	4	1.5 (day 1)	Bolus
58	Neuroblastoma (modified OMEC)	Carboplatin	1000	2.5 (days 1–5)	24
		Melphalan	180	1000 (day 1)	1
		VP-16	250	180 (day 1)	Bolus
		Vincristine	1.5	250 (day 1)	4
59	Mixed diagnosis	Carboplatin	900–1980	1.5 (day 1)	Bolus
		Ifosfamide	10000–18000	300–660 (days 1–3)	24
		VP-16	600–1500	2500–4500 (days 1–4)	2
				200–500 (days 1–3)	1.5–2
60	Mixed diagnosis	Carboplatin	1200–2100	(two daily fractions)	
		VP-16	960–1500	400–525 (days 1,3,5)	1
				320–500 (days 2,4,6)	6
61	Neuroblastoma and soft tissue sarcoma	Carboplatin	1250–1800	250–360 (days 1–5)	1
		Melphalan	180	180 (day 6)	5 min
62	Retinoblastoma	Carboplatin	1750	350 (days 1–5)	1
		VP-16	1750	350 (days 1–5)	1
		Cyclophosphamide	6400	1600 (days 2–5)	1

*The dose of carboplatin is adapted to Cr 51-EDTA renal clearance (GFR) (ml/min) according to the formula: dose (mg) = target AUC × {GFR + (15 × SA)} where AUC is the area under the curve of the ultrafilterable carboplatin and SA the body area. Target AUC is 20 mg × min/ml. TBI = total body irradiation.

55–62]. This concept is of particular potential benefit where there is little overlapping toxicity between the agents combined and, for this reason, it has been proposed to combine carboplatin with cisplatin [81].

Non-chemotherapy combinations

Experimental work has attempted to reduce the toxicity to normal tissues [82, 83] or increase the activity in tumour tissue, in particular by reducing the cellular pool of glutathione in the form of GSH. Such strategies are already under evaluation in adults treated with cisplatin with some encouraging results [84] but these have not yet been evaluated in childhood or with carboplatin.

As for cisplatin, some experimental evidence suggests a radiosensitising effect of carboplatin [85]; little is known about a possible potentiating effect with hyperthermia [86].

Carboplatin and biological therapy

Encouraging preliminary results from a combination of cisplatin and interleukin-2 have recently been reported in adults [87] but not yet studied in children or using carboplatin.

CONCLUSIONS

Since the discovery of the cytotoxicity of cisplatin due to the platination of DNA and its utilisation as anticancer chemotherapy, there has not been another cytotoxic drug with such an original mechanism of action or similar antitumour activity. The discovery and development of the analogue carboplatin, whose limiting toxicity is haematological, allows the reduction of long-term nephro- and ototoxicities, and may perhaps increase the range of indications for platinum therapy. Individual dose adaptation of carboplatin should be possible according to its pharmacokinetics and application of a dose formula based on renal function. Finally, the combination of carboplatin with other agents, while currently widely used, is in some cases unfounded. Clearer data regarding single-agent activity in many conditions are urgently required.

The role of carboplatin in a limited number of children's cancers is today clearly established, and further research is needed to optimise the drug's use, with regard to dose, scheduling and synergistic combination.

- Rosenberg B. Fundamental studies with cisplatin. *Cancer* 1985, **55**, 2303–2316.
- Baum ES, Gaynor P, Greenberg L, Kravit W, Hammond D. Phase II trial of cisplatin in refractory childhood cancer: Children's Cancer Study Group report. *Cancer Treat Rep* 1981, **65**, 815–822.
- Balis FM, Holcenberg JS, Poplack DG. General principles of chemotherapy. In Pizzo PA and Poplack DG, eds. *Principles and Practice of Pediatric Oncology*. Philadelphia, Lippincott, 1989, 178–179.
- Terheggen PMAB, Begg AC, Emond JY, Dubbleman R, Flook BG, den Engelse L. Formation of interaction products of carboplatin with DNA *in vitro* and in cancer patients. *Br J Cancer* 1991, **63**, 195–200.
- Knox RJ, Friedlos F, Lydall DA, Roberts JJ. Mechanism of cytotoxicity of anticancer platinum drugs: evidence that *cis*-diamminedichloroplatinum (II) and *cis*-diammine-(1,1-cyclobutane-dicarboxylato)platinum(II) differ only in the kinetics of their interaction with DNA. *Cancer Res* 1986, **46**, 1972–1979.
- De Graeff A, Slebos RJC, Rodenhuis S. Resistance to cisplatin and analogues: mechanisms and potential clinical implications. *Cancer Chemother Pharmacol* 1988, **22**, 325–332.
- Kelley SL, Rozencweig M. Resistance to platinum compounds: mechanisms and beyond. *Eur J Cancer Clin Oncol* 1989, **25**, 1135–1140.
- Hromas RA, North JA, Burns CP. Decreased cisplatin uptake by resistant L1210 leukemia cells. *Cancer Lett* 1987, **36**, 197–201.
- Masuda H, Ozols RF, Lai G-M, Fojo A, Rothenberg M, Hamilton TC. Increased DNA repair as a mechanism of resistance to *cis*-diamminedichloroplatinum (II) in human ovarian cancer cell lines. *Cancer Res* 1988, **48**, 5713–5716.
- Hromas RA, Andrews PA, Murphy MP, Burns CP. Glutathione depletion reverses cisplatin resistance in murine L1210 leukemia cells. *Cancer Lett* 1987, **34**, 9–13.
- Kelley SL, Basu A, Teicher BA, Hacker MP, Hamer DH, Lazo JS. Overexpression of metallothionein confers resistance to anticancer drugs. *Science* 1988, **241**, 1813–1815.
- Sklar MD. Increased resistance to *cis* diamminedichloro-platinum (II) in NIH 3T3 cells transformed by *ras* oncogenes. *Cancer Res* 1988, **48**, 793–797.
- Andrews PA, Howell SB. Cellular pharmacology of cisplatin: perspectives on mechanisms of acquired resistance. *Cancer Cells* 1990, **2**, 35–43.
- Vermorken JB, Vander Vijgh WJF, Klein I, et al. Pharmacokinetics of free and total platinum species after rapid and prolonged infusions of cisplatin. *Clin Pharmacol Ther* 1986, **39**, 136–144.
- Doz F, Brugiére L, Bastian G, Quintana E, Lemerle J, Zucker J-M. Clinical trial and pharmacokinetics of carboplatin 560 mg/m² in children. *Med Pediatr Oncol* 1990, **18**, 459–465.
- Madden T, Sunderland M, Santana VM, Rodman JH. The pharmacokinetics of high-dose carboplatin in pediatric patients with cancer. *Clin Pharmacol Ther* 1992, **51**, 701–707.
- Oguri S, Sakakibara T, Mase H, et al. Clinical pharmacokinetics of carboplatin. *J Clin Pharmacol* 1988, **28**, 208–215.
- Koeller JM, Trump DL, Tutsch KD, Earhart RH, Davis TE, Tormey DC. Phase I clinical trial and pharmacokinetics of carboplatin (NSC241240) by single monthly infusion. *Cancer* 1986, **57**, 222–225.
- Calvert AH, Newell DR, Gumbrell LA, et al. Carboplatin dosage: prospective evaluation of a simple formula based on renal function. *J Clin Oncol* 1989, **7**, 1748–1756.
- Egorin MJ, Van Echo DA, Tipping SJ, et al. Pharmacokinetics and dose reduction of *cis*-diammine (1,1-cyclobutane-dicarboxylato)-platinum in patients with impaired renal function. *Cancer Res* 1984, **44**, 5432–5438.
- Newell DR, Pearson ADJ, Balmanno K, et al. Carboplatin pharmacokinetics in children: the development of a paediatric dosage formula. *J Clin Oncol*, in press.
- Marina NM, Rodman J, Sheema SJ, et al. Phase I study of escalating targeted doses of carboplatin combined with ifosfamide and etoposide in children with relapsed solid tumors. *J Clin Oncol* 1993, **11**, 554–560.
- Sorensen BT, Strömgren A, Jakobsen P, Jakobsen A. A limited sampling method for estimation of the carboplatin area under the curve. *Cancer Chemother Pharmacol* 1993, **31**, 323–327.
- Siddik ZH, Jones M, Boxall FE, Harrap KR. Comparative distribution of carboplatin and cisplatin in mice. *Cancer Chemother Pharmacol* 1988, **21**, 19–24.
- Doz F, Berens ME, Dougherty DV, Rosenblum ML. Comparison of the cytotoxic activities of cis-platin and carboplatin against glioma cell lines at pharmacologically relevant drug exposure. *J Neuro-Oncol* 1991, **11**, 27–35.
- Bacha DM, Caparros-Sison B, Allen JA, Walker R, Tan CTC. Phase I study of carboplatin (CBDCA) in children with cancer. *Cancer Treat Rep* 1986, **70**, 865–869.
- Goldie JH, Coldman AJ. Quantitative model for multiple levels of drug resistance in clinical tumors. *Cancer Treat Rep* 1983, **67**, 923–931.
- Emminger W, Emminger-Schmidmeier W, Peters C, Hawliczek R, Höcker P, Gadner H. Is treatment intensification by adding etoposide and carboplatin to fractionated total body irradiation and melphalan acceptable in children with solid tumors with respect to toxicity? *Bone Marrow Transplant* 1991, **8**, 119–123.
- Shea TC, Mason JR, Stirniolo AM, et al. Sequential cycles of high-dose carboplatin administered with recombinant human granulocyte-macrophage colony-stimulating factor and repeated infusions of autologous peripheral-blood progenitor cells: a novel and effective method for delivering multiple courses of dose-intensity therapy. *J Clin Oncol* 1992, **10**, 464–473.
- Nichols CR, Andersen J, Lazarus HM, et al. High-dose carboplatin and etoposide with autologous bone marrow transplantation in

refractory germ cell cancer: an Eastern Cooperative Oncology Group protocol. *J Clin Oncol* 1992, **10**, 558-563.

31. Smith JW, Longo DL, Alvord G, et al. The effects of treatment with interleukin-1alpha on platelet recovery after high-dose carboplatin. *N Engl J Med* 1993, **328**, 756-761.
32. Sleijfer DT, Smit EF, Meijer S, Mulder NH, Postmus PE. Acute and cumulative effects of carboplatin on renal function. *Br J Cancer* 1989, **60**, 116-120.
33. Brandt LJ, Broadbent V. Nephrotoxicity following carboplatin use in children: is routine monitoring of renal function necessary? *Med Pediatr Oncol* 1993, **21**, 31-35.
34. Stevens MCG, Lewis IJ, Pearson AJ, Pinkerton CR. Carboplatin and renal function in children. *Br J Cancer* 1991, **63**, 158.
35. Brock P, Pritchard J, Bellman S, Pinkerton R. Ototoxicity of high-dose cis-platinum in children. *Med Pediatr Oncol* 1988, **16**, 368-369.
36. Kennedy ICS, Fitzharris BM, Colls BM, Atkinson CH. Carboplatin is ototoxic. *Cancer Chemother Pharmacol* 1990, **26**, 232-234.
37. Schell MJ, McHaney VA, Green AA. Hearing loss in children and young adults receiving cisplatin with or without prior cranial irradiation. *J Clin Oncol* 1989, **7**, 754-760.
38. Pinkerton CR, Williams D, Mellor ST, McElwain TJ. 5HT₃ antagonist ondansetron, an effective out-patient anti-emetic in cancer treatment. *Arch Dis Childhood* 1990, **65**, 822-824.
39. Sanderson BJ, Johnson KJ, Henner WD. Dose-dependant cytotoxic and mutagenic effects of antineoplastic alkylating agents on human lymphoblastoid cell lines. *Environ Mol Mutagen* 1991, **17**, 238-243.
40. Greene MH. Is cisplatin a human carcinogen? *J Natl Cancer Inst* 1992, **84**, 306-312.
41. Jeha S, Jaffe N, Robertson R. Secondary acute non-lymphoblastic leukemia in two children following treatment with a *cis*-diamminedichloroplatinum-II- based regimen for osteosarcoma. *Med Pediatr Oncol* 1992, **20**, 71-74.
42. Hansen SW, Berthelsen JG, Von der Maase H. Long-term fertility and Leydig cell function in patients treated for germ cell cancer with cisplatin, vinblastin, and bleomycin versus surveillance. *J Clin Oncol* 1990, **8**, 1695-1698.
43. Köpf-Maier P. Effects of carboplatin on the testis. A histological study. *Cancer Chemother Pharmacol* 1992, **29**, 227-235.
44. Boughattas NA, Lévi F, Hecquet B, et al. Circadian time dependance of murine tolerance for carboplatin. *Toxicol Appl Pharmacol* 1988, **96**, 233-247.
45. Friedman HS, Krischer JP, Burger P, et al. Treatment of children with progressive or recurrent brain tumors with carboplatin or iproplatin: A Pediatric Oncology Group randomized phase II study. *J Clin Oncol* 1992, **10**, 249-256.
46. Philip T, Ghalie R, Pinkerton R, et al. A phase II study of high-dose cisplatin and VP-16 in neuroblastoma: a report from the Société Française d'Oncologie Pédiatrique. *J Clin Oncol* 1987, **5**, 941-950.
47. Sexauer CL, Khan A, Burger PC, et al. Cisplatin in recurrent pediatric brain tumors. A POG phase II study. *Cancer* 1985, **56**, 1497-1501.
48. Lefkowitz IB, Packer RJ, Siegel KR, Sutton LN, Schut L, Evans AE. Results of treatment of children with recurrent medulloblastoma/primitive neuroectodermal tumors with lomustine, cisplatin, and vincristine. *Cancer* 1990, **65**, 412-417.
49. Zucker J-M, Quintana E, Pacquement H, Michon J, Doz F, Delattre O. Le rétinoblastome. In Lemerle J, ed. *Cancers de l'Enfant*. Paris, Flammarion Med Sciences, 1989, 579-596.
50. Douglass EC, Green AA, Wrenn E, Champion J, Shipp M, Pratt CB. Effective cisplatin (DDP) based chemotherapy in the treatment of hepatoblastoma. *Med Pediatr Oncol* 1985, **13**, 187-190.
51. Pinkerton CR, Pritchard J, Spitz L. High complete response rate in children with advanced germ cell tumors using cisplatin-containing combination chemotherapy. *J Clin Oncol* 1986, **4**, 194-199.
52. Rosen G, Nirenberg A. Chemotherapy for osteogenic sarcoma: an investigative method, not a recipe. *Cancer Treat Rep* 1982, **66**, 1687-1697.
53. Quintana E, Doz F, Pontvert D, Pacquement H, Bataini J-P, Zucker J-M. Improved survival in childhood nasopharyngeal carcinoma: a report of a single institution series of 13 patients treated with pre and post radiation chemotherapy. *Med Pediatr Oncol* 1991, **19**, 394 (abstract).
54. Riccardi R, Riccardi A, Dirocco C, et al. Cerebrospinal fluid pharmacokinetics of carboplatin in children with brain tumors. *Cancer Chemother Pharmacol* 1992, **30**, 21-24.
55. Shea TC, Flaherty M, Elias A, et al. A phase I clinical and pharmacokinetic study of carboplatin and autologous bone marrow support. *J Clin Oncol* 1989, **7**, 651-661.
56. Philip T, Gentet J-C, Carrie C, et al. Phase II studies of combination drugs with high-dose carboplatin in neuroblastoma (800 mg/m² to 1250 mg/m²): a report from the LMCE group. *Prog Clin Biol Res* 1988, **271**, 573-582.
57. Corbett R, Pinkerton R, Pritchard J, et al. Pilot study of high-dose vincristine, etoposide, carboplatin and melphalan with autologous bone marrow rescue in advanced neuroblastoma. *Eur J Cancer* 1992, **28A**, 1324-1328.
58. Gordon SJ, Pearson ADJ, Reid MM, Craft AW. Toxicity of single-day high-dose vincristine, melphalan, etoposide and carboplatin with autologous bone marrow rescue in advanced neuroblastoma. *Eur J Cancer* 1992, **28A**, 1319-1323.
59. Wilson WH, Jain V, Bryant G, et al. Phase I and II study of high-dose ifosfamide, carboplatin and etoposide with autologous bone marrow rescue in lymphomas and solid tumors. *J Clin Oncol* 1992, **10**, 1712-1722.
60. Santana WM, Schell MJ, Williams R, et al. Escalating sequential high-dose carboplatin and etoposide with autologous marrow support in children with relapsed solid tumors. *Bone Marrow Transpl* 1992, **10**, 457-462.
61. Pinkerton CR, McElwain TJ. High-dose carboplatin in combination regimens using autologous bone marrow rescue in neuroblastoma and soft tissue sarcoma. *Med Pediatr Oncol* 1989, **17**, 310 (abstract).
62. Doz F, Quintana E, Michon J, et al. High dose chemotherapy using VP16, carboplatin and cyclophosphamide with autologous bone marrow transplantation (ABMT) rescue in 9 children with extra-ocular retinoblastoma. *Proc Am Soc Clin Oncol* 1992, **11**, 371 (abstract).
63. Furman WL, Fairclough DL, Huhn RD, et al. Therapeutic effect and pharmacokinetics of recombinant human granulocyte-macrophage colony-stimulating factor in childhood cancer patients receiving myelosuppressive chemotherapy. *J Clin Oncol* 1991, **9**, 1022-1028.
64. Allen JC, Walker R, Luks E, Jennings M, Barfoot S, Tan C. Carboplatin and recurrent childhood brain tumors. *J Clin Oncol* 1987, **5**, 459-465.
65. Gentet J-C, Doz F, Bouffet E, et al. Carboplatin (CP) and VP 16 in medulloblastoma (MB): a phase II study. *Med Pediatr Oncol*, in press.
66. Douek E, Kingston JE, Malpas JS, Plowman. Platinum-based chemotherapy for recurrent CNS tumours in young patients. *J Neurol Neurosurg Psychiatry* 1991, **54**, 722-725.
67. Castello MA, Clerico A, Deb G, Dominici C, Fidani P, Donfrancesco A. High-dose carboplatin in combination with etoposide (JET regimen) for childhood brain tumors. *Am J Pediatr Hematol Oncol* 1990, **12**, 297-300.
68. Gaynon PS, Ettinger LJ, Baum ES, Siegel SE, Kralo MD, Hammond GD. Carboplatin in childhood brain tumors. A Children's Cancer Study Group phase II trial. *Cancer* 1990, **66**, 2467-2469.
69. Zeltzer P, Eppert K, Nelson MD, Huff K, Gaynon P. Prolonged response to carboplatin in an infant with brain stem glioma. *Cancer* 1991, **67**, 43-47.
70. Friedman HS, Krischer JP, Burger P, et al. Treatment of children with progressive or recurrent brain tumors with carboplatin or iproplatin: A Pediatric Oncology Group randomized phase II study. *J Clin Oncol* 1992, **10**, 249-256.
71. Packer RJ, Lange B, Alter J, et al. Carboplatin and vincristine for recurrent and newly diagnosed low-grade gliomas of childhood. *J Clin Oncol* 1993, **11**, 850-856.
72. Frappaz D, Michon J, Hartman O, et al. Etoposide and carboplatin in neuroblastoma: a French Society of Pediatric Oncology phase II study. *J Clin Oncol* 1992, **10**, 1592-1601.
73. Lewis IJ, Stevens MCG, Pearson ADJ, et al. Carboplatin activity in cisplatin treated neuroblastoma. *Prog Clin Biol Res* 1991, **366**, 553-562.
74. Pinkerton CR, Broadbent V, Horwitz A, et al. "JEB"—a carboplatin based regimen for malignant germ cell tumours in children. *Br J Cancer* 1990, **62**, 257-262.
75. Bajorin DF, Sarosdy MF, Pfister DG, et al. Randomized trial of etoposide and cisplatin versus etoposide and carboplatin in patients with good risk germ cell tumors: a multiinstitutional study. *J Clin Oncol* 1993, **11**, 598-606.
76. Brugières L, De Kraker J, Rubie H, et al. Carboplatin and epirubicin in childhood hepatoblastoma and hepatocellular carcinoma. *Proc Am Soc Clin Oncol* 1993, **12**, 426 (abstract).

77. Pein F, Tournade M-F, Bergeron C, et al. Combination etoposide (VP16) and carboplatin (CBDCA) for resistant or relapsed Wilm's tumor (T). A phase II study conducted by the French Society of Paediatric Oncology (SFOP). *Proc Am Soc Clin Oncol* 1990, **9**, 293 (Abstract).

78. Martinez JA, Martin GM, Sanz GF, et al. A phase II clinical trial of carboplatin infusion of high-risk acute non-lymphoblastic leukemia. *J Clin Oncol* 1991, **9**, 39-43.

79. Vogler WR, Harrington DP, Winton EF, et al. Phase II clinical trial of carboplatin in relapsed and refractory leukemia. *Leukemia* 1992, **6**, 1072-1075.

80. Carli M, Flamant F, Treuner J, et al. High dose epirubicin (Epi) in combination with carboplatin (CBDCA) and vincristine (VCR) in stage IV malignant mesenchymal tumors (MMT). *Proc Am Soc Clin Oncol* 1992, **11**, 369 (abstract).

81. Piccart MJ, Nogaret JM, Marcelis L, et al. Cisplatin combined with carboplatin: a new way of intensification of platinum dose in the treatment of advanced ovarian cancer. *J Natl Cancer Inst* 1990, **82**, 703-707.

82. Doz F, Berens ME, Spencer DR, Dougherty DV, Rosenblum ML. Experimental basis for increasing the therapeutic index of carboplatin in brain tumor therapy by pretreatment with WR compounds. *Cancer Chemother Pharmacol* 1991, **28**, 308-310.

83. Doz F, Berens ME, Descheppe CF, Dougherty DV, Bigornia V, Rosenblum ML. Experimental basis for increasing the therapeutic index of cisdiaminodiacarboxylatocyclobutaneplatinum (II) in brain tumor therapy by a high zinc diet. *Cancer Chemother Pharmacol* 1992, **29**, 219-226.

84. Glover D, Glick JH, Weiler C, Fox K, Guerry D. WR-2721 and high-dose cisplatin: an active combination in the treatment of metastatic melanoma. *J Clin Oncol* 1987, **5**, 574-578.

85. Schwachöffer JHM, Crooumans MA, Hoogenhout J, et al. Effectiveness in inhibition of recovery of cell survival by cisplatin and carboplatin: influence of treatment sequence. *Int J Radiat Oncol Biol Phys* 1991, **20**, 1235-1241.

86. Cohen JD, Robins HI, Javid MJ. Sensitization of C6 glioma to carboplatin cytotoxicity by hyperthermia and thymidine. *J Neuro-Oncol* 1990, **9**, 1-8.

87. Demchak PA, Mier JW, Robert NJ, O'Brien K, Gould JA, Atkins MB. Interleukin-2 and high-dose cisplatin in patients with metastatic melanoma: a pilot study. *J Clin Oncol* 1991, **9**, 1821-1830.

Pergamon

European Journal of Cancer Vol. 30A, No. 2, pp. 201-206, 1994
 Copyright © 1994 Elsevier Science Ltd
 Printed in Great Britain. All rights reserved
 0959-8049/94 \$6.00 + 0.00

0959-8049(93)E0040-W

Does Improved Control of Tumour Growth Require an Anti-cancer Therapy Targeting Both Neoplastic and Intratumoral Endothelial Cells?

Giampietro Gasparini and Adrian L. Harris

INTRODUCTION

MOST HUMAN metastatic solid tumours are not currently curable with any kind of systemic anticancer therapy (i.e. chemotherapy, hormone therapy and immune therapy), and the mortality caused by the "four major killer tumours" (lung, colorectal, breast and prostate cancers), has not significantly decreased in recent years [1]. This is due to the fact that some solid epithelial tumours are not sensitive to chemotherapy [2, 3], and that those which are initially sensitive may develop acquired resistance after exposure to drugs (see [3] and references therein). Thus, there is now a critical need for new therapeutic strategies in the hope of improving tumour growth control in the future. It seems appropriate to speculate that the search for the genetic and biochemical changes that lead to malignancy is an important strategy to identify the key stages of tumour transformation and the process of metastasis [4]. Identification of specific biological targets could also provide new opportunities for developing

rationally designed biological therapies for cancer [4-6]. These new targets include oncogenes, growth factors and their receptors, signal transduction pathways, cell differentiation signals [6, 7], antisense inhibitors of gene expression [8], gene deletion [9] and tumour angiogenesis [10].

One of the most promising of these is the discovery of specific angiogenesis inhibitors. As stated by Marx [4], "researchers are sufficiently hopeful about the anti-angiogenesis approach to cancer therapy that they are beginning clinical trials".

THE BIOLOGICAL BACKGROUND

Before the 1960s, it was believed that the only relevant phenomenon related to tumour vascularisation was the dilation of blood vessels from normal tissues surrounding the tumour (hyperaemia) [11].

Research begun about 25 years ago by Folkman and associates, and successively carried out by several other groups, has revolutionised this concept. These studies show that angiogenesis, the fundamental process leading to the formation of new blood vessels by sprouting from pre-existing endothelium, is stimulated by tumour cells, and that it is of critical importance in the processes of tumour invasiveness, progression and metastasis [10].

It is now assumed that carcinogenesis and tumour progression

Correspondence to G. Gasparini at the Department of Radiotherapy and Oncology, St. Bortolo Medical Center, 36100 Vicenza, Italy.
 A.L. Harris is at the Imperial Cancer Research Fund, Molecular Oncology Laboratory, Institute of Molecular Medicine, University of Oxford and John Radcliffe Hospital, Oxford, U.K.
 Received 19 Oct. 1993; accepted 11 Nov. 1993.